Statistical estimation is the cornerstone of statistical inference, enabling us to derive insights about population characteristics using sample data. The population is described by a probability density function (pdf) $f(x;θ)$, which depends on unknown parameters θ. These parameters are often not directly observable but play a vital role in defining the population's behavior and structure. To obtain a good such estimators following method can be used: Method of Maximum Likelihood Estimator Method of Minimum Variance Method of Moments Method of Least Squares Method of Minimum Chi-square Method of Inverse Probability Method of Maximum Likelihood Estimator For each sample point $x$ let $\hat\theta(x)$ be a estimator value at which $L(\theta|x)$ attains it maximum value as a function of $\theta$ with $x$ held fixed. A maximum likelihood estimator based on sample points $x_{i}$ is $\hat\theta_{MLE}$. In practical scenarios, θ is estimated using a random s...
MLE Estimation and Log-Likelihood Contour for Pareto Distribution
Log-Likelihood Contour for Pareto Distribution
MLE Estimation for Pareto Distribution
Python code for Python code for Pareto Distribution
Pareto Distribution Code Block
# Python program to plot the Pareto distribution curveimport numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pareto
# Parameters for the Pareto distribution
alpha = 3# Shape parameter
scale = 1# Scale parameter# Generate x values
x = np.linspace(1, 5, 1000)
# Pareto PDF values
y = pareto.pdf(x, alpha, scale=scale)
# Plot the Pareto distribution curve
plt.plot(x, y, label='Pareto Distribution', color='orange')
plt.title('Pareto Distribution Curve')
plt.xlabel('x')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
# Show the plot
plt.show()