The pdf of exponential distribution is given as `f(x; \theta) = \frac{1}{\theta} e^{-x / \theta}, \quad x \geq 0, \, \theta > 0.` The MLE estimator is given by considering the likelihood function `L(\theta ; X) = \prod_{i=1}^n f(x_i; \theta) = \prod_{i=1}^n \frac{1}{\theta} e^{-x_i / \theta}.` `L(\theta; X) = \frac{1}{\theta^n} exp{-\sum_{i=1}^n x_i / \theta}.` Now taking log both sides to make calculus easy `\log L(\theta) = \log \left( \frac{1}{\theta^n} exp({-\frac{\sum_{i=1}^n x_i}{\theta}}) \right).` `\log L(\theta) = -n \log \theta - \frac{\sum_{i=1}^n x_i}{\theta}.` Differentiating partially with respect to `theta` both sides `\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^n x_i}{\theta^2}.` Putting it equal to zero `-\frac{n}{\theta} + \frac{\sum_{i=1}^n x_i}{\theta^2} = 0.` `\frac{\sum_{i=1}^n x_i}{\theta^2} = \frac{n}{\theta}.` `\sum_{i=1}^n x_i = n \theta.` ...
Let \(X_{1},X_{2},X_{3},...............X_{n}\) be an identically independent sample drawn from the exponential family. `f(x ; \theta) = c(\theta)h(x)\exp{(p(\theta).T(x))} \tag{1}` The joint density function of exponential family is `f(x_{i} \, ; \, \theta) = c(\theta)^n \prod_{i=1}^{n} h(x_{i}) \exp\left(\sum_{i=1}^{n} p(\theta) \cdot T(x_{i})\right)` here $h(\underline{x})=\prod_{i=1}^{n}h(x_{i})$ and `g\left(\sum_{i=1}^{n} T(x_i), p(\theta)\right) = \left[c(\theta)\right]^n \exp\left(\sum_{i=1}^{n} T(x_i) \cdot p(\theta)\right)` The exponential families of distributions are also called regular families since they satisfy certain mild regularity conditions apart from the property that its support does not depend on the parameter $\boldsymbol{\theta}$. We have an important result \[ E_{\boldsymbol{\eta}} \left( \sum_{i=1}^{n} T_j(X_i) \right) = n \frac{\partial...
MLE Estimation and Log-Likelihood Contour for Pareto Distribution
Log-Likelihood Contour for Pareto Distribution
MLE Estimation for Pareto Distribution
Python code for Python code for Pareto Distribution
Pareto Distribution Code Block
# Python program to plot the Pareto distribution curveimport numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pareto
# Parameters for the Pareto distribution
alpha = 3# Shape parameter
scale = 1# Scale parameter# Generate x values
x = np.linspace(1, 5, 1000)
# Pareto PDF values
y = pareto.pdf(x, alpha, scale=scale)
# Plot the Pareto distribution curve
plt.plot(x, y, label='Pareto Distribution', color='orange')
plt.title('Pareto Distribution Curve')
plt.xlabel('x')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
# Show the plot
plt.show()