Maximum Likelihood Estimator for Log Normal Distribution
   If   $X_{1}, X_{2},......X_{n} ~  LogN(\mu, \sigma^2) \tag{1}$  The pdf of log normal distribution is given by        `f(x; \mu, \sigma^2) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(   -\frac{1}{2} \left( \frac{\log(x) - \mu}{\sigma} \right)^2 \right), \quad x   > 0 \tag{2}`          The likelihood function of log Normal pdf is given by     `L(\mu, \sigma^2) = \prod_{i=1}^{n} f_X (x_i) \tag{3}`      `L(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{x_i \sigma \sqrt{2 \pi}} \exp   \left[ -\frac{1}{2} \left( \frac{\log(x_i) - \mu}{\sigma} \right)^2 \right]   \tag{4}`         `L(\mu, \sigma^2) = \frac{1}{(\sigma \sqrt{2 \pi})^n \prod_{i=1}^{n} x_i} \exp   \left( -\frac{1}{2} \sum_{i=1}^{n} \left( \frac{\log(x_i) - \mu}{\sigma}   \right)^2 \right) \tag{5}`     Now taking the log both sides      `\log L(\mu, \sigma^2) = -n \log(\sigma \sqrt{2 \pi}) - \sum_{i=1}^{n}   \log(x_i) - \frac{1}{2} \sum_{i=1}^{n} \left( \frac{\log(x_i) - \mu}{\sigma}   \right)^2 \tag{6}`        Now...
 
 
 
