The pdf of Normal distribution is given by:
`f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}`
The likelihood function is given by
`f(x; \mu, \sigma^2) =\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_{i} - \mu)^2}{2\sigma^2}\right)`
`L(\mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)`
Now taking log both sides,
`\log L(\mu, \sigma^2) = n \log \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2`
`\log L(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2`
Now differentiate the above likelihood equation partially with respect to `\mu` and further solving this calculus
`\frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)`
`\frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \cdot \sum_{i=1}^n \frac{\partial}{\partial \mu} (x_i - \mu)^2`
`\frac{\partial}{\partial \mu} (x_i - \mu)^2 = -2(x_i - \mu)`
`\frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \cdot \sum_{i=1}^n (-2)(x_i - \mu)`
`\frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)`
`\frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu\right)`
Now putting above equation equal to zero to get the MLE of `\mu`
`\frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu\right) = 0`
`\sum_{i=1}^n x_i - n\mu = 0`
`n\mu = \sum_{i=1}^n x_i`
`\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i=\bar X`
So this is required Maximum Likelihood estimator for `X~N(\mu, \sigma^2)`
The Restricted MLE in Normal distribution for suppose `\mu>\mu_{°}` is given by
# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Parameters of the normal distribution
mu = 0  # Mean
sigma = 1  # Standard deviation
# Generate x values
x = np.linspace(-6, 6, 1000)
# Normal PDF values
y = norm.pdf(x, mu, sigma)
# Calculate the probability for -5 < X < 5
lower_bound, upper_bound = -5, 5
probability = norm.cdf(upper_bound, mu, sigma) - norm.cdf(lower_bound, mu, sigma)
print(f"P({lower_bound} < X < {upper_bound}) = {probability:.4f}")
# Highlight the area under the curve for -5 < X < 5
x_fill = np.linspace(lower_bound, upper_bound, 1000)
y_fill = norm.pdf(x_fill, mu, sigma)
# Plot the normal distribution curve
plt.plot(x, y, label='Normal Distribution', color='blue')
plt.fill_between(x_fill, 0, y_fill, color='orange', alpha=0.5, label=f"Area = {probability:.4f}")
# Add labels and title
plt.title('Normal Distribution Curve with P(-5 < X < 5)')
plt.xlabel('X')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
# Show the plot
plt.show()
        
    `f(x; \mu, \sigma^2) =\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_{i} - \mu)^2}{2\sigma^2}\right)`
`L(\mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)`
Now taking log both sides,
`\log L(\mu, \sigma^2) = n \log \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2`
`\log L(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2`
Now differentiate the above likelihood equation partially with respect to `sigma^2` and further solving this we get
`\frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2`
`\frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2`
`-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0`
`-n\sigma^2 + \sum_{i=1}^n (x_i - \mu)^2 = 0`
`n\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2`
`\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2`
The likelihood Estimator of `sigma^2` is given by when `mu` is known