Hey there! Ready to crunch some numbers? Let’s dive into the world of statistics! Feel Free to reach out any time Contact Us

Maximum Likelihood Estimators in Uniform Distribution

Maximum Likelihood Estimator in uniform distribution, rectangular uniform distribution

 Let  $x_1, x_2, x_3,...........,x_n$ denote the observations taken from a $Uniform \\ Distribution$ with pdf:

`f(x, \theta) =   1 ; \theta - \frac{1}{2} \leq x \leq \theta + \frac{1}{2}, -\infty < \theta < \infty`

we need to compute the maximum likelihood estimator of $\theta$.

Considering the $\log$ function for the pdf,

`L(\theta ; x) = \prod_{i=1}^{n} f(x_{i}, \theta) = \prod_{i=1}^{n} I_{(0,\theta)}(x_{i})`

`L =L(\theta ; x_1, x_2,.....,x_n)=\begin{cases}  1 & \text{,}\theta - \frac{1}{2}\leq x_i \leq \theta + \frac{1}{2} \\0 & \text{, } otherwise \end{cases}`

id $x_{(1)},x_{(2)},x_{(3)},................x_{(n)}$ is the order sample, then 

`\theta - \frac{1}{2} \leq x_{(1)},x_{(2)},x_{(3)},................x_{(n)} \leq \theta + \frac{1}{2}`

Thus, $L$ will attain the maximum if 

`\theta - \frac{1}{2} \leq x_{(1)}  ,and,  x_{(n)} \leq \theta + \frac{1}{2}`

`\theta \leq x_{(n)} + \frac{1}{2} ,and,  x_{(n)} - \frac{1}{2} \leq \theta`

Hence every statistic $t = t \left( x_1, x_2, x_3,...........,x_n \right)$ such that

`x_{(n)} - \frac{1}{2} \leq  t \left( x_1, x_2, x_3,...........,x_n \right) \leq x_{(1)} + \frac{1}{2}`, provides an MLE for $\theta$  

Unifrom Density Plot


Uniform Distribution with $X \sim U[0, \theta]$

Let $X_{1},X_{2},X_{3},..............,X_{n}$ be a random sample drawn from $U(0 , \theta) , \theta > 0$ then the mle of  $\theta$ will be:

The likelihood function for $\theta$ is 

`L(\theta) = \prod_{i=1}^{n} f_{X}(x_{i}) \Rightarrow \prod_{i=1}^{n} \frac{1}{\theta^{n}}I_{(0, \theta)}(x_{n})`

Here the likelihood function is maximum when the value of $\theta$ is maximum where $x_{(n)}$ order statistic is maximum. So $L(0, \theta)$ is maximum for the value of  $x_{(n)}$. There for the MLE of $\theta$ is 

`\hat{\theta}_{MLE} = X_{(n)}`

Plot for $X \sim U[0, \theta]$

Post a Comment

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
Site is Blocked
Sorry! This site is not available in your country.